

Engineering Standards and Design Practices

● Google’s Java Style Guide

● Agile SCRUM Development Process

Summary of Requirements

● Ability to visualize Control Flow Graphs

○ Easy to read and visually pleasing styling

○ Layout that closely resembles Atlas’s graph layout

● Interactivity

○ Nodes can be moved

○ Node colors can be changed

● Integration with Jupyter

○ Functions on all browsers

○ Functions on all operating systems

Applicable Courses from Iowa State University Curriculum
● CS 227 - Intro to Object Oriented Program

● CS 228 - Data Structures

● CS 311 - Algorithms

● CS 319 - Web design

● CS 363 - Databases

New Skills/Knowledge acquired that was not taught in courses
● Working on an open source project

● Working with third party visualization libraries

SDMAY19-54 1

Table of Contents
1 Introduction 4

Acknowledgement 4

Problem and Project Statement 4

General Problem Statement: 4

General Solution Approach: 4

Operational Environment 4

Requirements 5

Intended Users and Uses 5

Assumptions and Limitations 5

Expected End Product and Deliverables 6

2. Specifications and Analysis 6

Proposed Design 6

Design Analysis 6

Development Process 7

Design Plan 7

3. Statement of Work 8

3.1 Previous Work And Literature 8

3.2 Technology Considerations 8

3.3 Task Decomposition 9

3.4 Possible Risks And Risk Management 9

3.5 Project Proposed Milestones and Evaluation Criteria 9

3.6 Project Tracking Procedures 10

3.7 Expected Results and Validation 10

4. Project Timeline, Estimated Resources, and Challenges 10

4.1 Project Timeline 10

4.2 Feasibility Assessment 11

4.3 Personnel Effort Requirements 11

4.4 Other Resource Requirements 12

SDMAY19-54 2

4.5 Financial Requirements 12

5. Testing and Implementation 12

Interface Specifications 12

Hardware and software 12

Functional Testing 13

Non-Functional Testing 13

Results 13

6. Closing Material 13

6.1 Conclusion 13

6.2 References 13

7. Operation Manual 14

List of figures/tables/symbols/definitions

Figure 1 7

Figure 2 10

Table 1 9

Table 2
11

SDMAY19-54 3

1 Introduction

1.1 ACKNOWLEDGEMENT

Work on this project was done with assistance from Payas Awadhutkar, who has worked closely
with the software before and will serve as a technical guide to the software and codebase. We are
working closely with him to familiarize ourselves with the project and the problems we need to
solve.

1.2 PROBLEM AND PROJECT STATEMENT

General Problem Statement:

The Atlas plugin for Eclipse is capable of generating and visualizing control flow graphs of
codebases, which allows a developer to visually debug a program. This is very useful, however, the
visualization functionality is proprietary and can only be done locally with Atlas, which makes it
difficult for developers to share these graphs amongst themselves. Our client’s tool, CHPG, takes an
exported graph from Atlas and attempts to replicate Atlas’ visualization. Right now CHPG is
struggling to render these graphs in a coherent way. The problem this project seeks to solve is to
improve CHPG’s visualization capabilities so that they are comparable to Atlas’, making CHPG a
more usable tool for teams in the debugging process.

General Solution Approach:

Our approach to solving this problem is to break it down incrementally. We are collecting a list of
changes that need to be made as we compare Atlas and CHPG graphs. We are tackling the obvious
issues first, and working our way down the list. Assuming there are no issues with the library
currently in use we should be able to fine tune the visualization over time to reach a viable state. If
we reach this state and still have time we will continue to work on incremental improvements to
CHPG’s other functions, with the goal of leaving CHPG as a much more viable tool.

1.3 OPERATIONAL ENVIRONMENT

The end project here is software so we do not need to take physical operational environment into
account.

SDMAY19-54 4

1.4 REQUIREMENTS

Currently the most important functional requirements for our project center around visualization
and integration with Jupyter. A high level overview of the function requirements is given below:

1. Ability to visualize Control Flow Graphs
a. Easy to read and visually pleasing styling
b. Layout that closely resembles Atlas’s graph layout
c. Interactivity

i. Nodes can be moved
ii. Node colors can be changed

2. Integration with Jupyter
a. Functions on all browsers
b. Functions on all operating systems

Our non-functional requirements center around the following categories:

3. Performance: Our application should perform processing intensive actions quickly enough
to not impede education. The processing intensive actions are:

a. Visualization
b. Interactivity
c. Input and Output

4. Simplicity of Installation: The application should be easy to install and set up
5. Ease of Use: The application should be easy for those new to software development
6. Expandable: The application we develop should lend itself to further expansion by open

source developers

1.5 INTENDED USERS AND USES

The intended users of this product are researchers, students, and professionals. We will make a
robust code visualization tool that can be used to understand, analyze, and teach systems and
processes that can be represented as graphs. Our application will enable them to share graphs and
findings easily.

1.6 ASSUMPTIONS AND LIMITATIONS

Assumptions:

- Functionality outside of the visualization aspect of the tool is outside our scope until
visualization is working as desired.

- The exported Atlas graph that CHPG takes as input will be a valid graph, so we don’t need
to validate.

SDMAY19-54 5

Limitations:

- We do not have access to the Atlas visualization source code because it is proprietary.
- We are currently limited by the capabilities of the visualization library that we are using. If

this becomes a problem we may need to change libraries.

1.7 EXPECTED END PRODUCT AND DELIVERABLES

The final product will be an updated version of the visualization algorithm for CHPG and any
additional improvements that we are able to make to the software within the time we have to work
on this project. Visualization shall mimic Atlas as best as possible, meaning that the generated
graphs should be easily readable and understood. These changes will be delivered in increments
approximately every 4 weeks. Further deliverables will be decided based on the progress of the
project and areas that are identified as needing improvement as time goes on.

2. Specifications and Analysis

2.1 PROPOSED DESIGN

Our approach to completing requirements related to the visualization aspect of the project has
been to leverage the capabilities of the visualization library that CHPG currently uses, CytoscapeJS.
Alternatively, we could have found other visualization libraries, but we feel that CytoscapeJS is
flexible and robust enough to suit our needs.

To fix the issues of integration with Jupyter, we are going with an entirely new approach to the
problem. We are going to use a local server to serve up any data that we need to send to Jupyter for
visualization. This will allow us to escape issues of cross compatibility that are present in the
current implementation.

Expanding upon the graph serialization functionality of the tool is something we would have liked
to do given additional time. As of now, we know that we would want to generalize the graph
serialization enough to be able to use graphs exported from Atlas and graphs created via API.

2.2 DESIGN ANALYSIS

As of this point, we have

1. Fixed node styling
2. Implemented interactivity with the graph
3. Improved the overall graph layout
4. Improved Jupyter integration
5. Added containers to graphs

Our improvements to the node styling have been a success. They look much cleaner and look much
more similar to their Atlas counterparts. Additionally, the interaction tool adds value and can be
expanded on as we see the need.

We spent quite a bit of time looking into possible configurations for the CytoscapeJS library,
namely within the Dagre and Klay layouts, and have settled on the options that give us the closest
alternative to Atlas’ proprietary visualization. While still not ideal, we have had the most success
with the Dagre layout so far. Our approach has been to use what is available within CytoscapeJS,

SDMAY19-54 6

but going forward we may need to shift that approach to customize the library/layout for our
needs.

In addition we also improved integration with Jupyter notebook by using web sockets to deliver
files containing the visualization to the browser. This was a big improvement from when they were
stored in a temporary directory and Jupyter failed to load them in. Now they consistently display in
the browser. One issue at the moment is that the socket connection fails when run on a Mac, so
that will need to be addressed. We anticipate running a small local server to handle serving up data
to the Jupyter notebook dynamically. This should solve all cross compatibility issues.

The strengths of our solution so far are that it generates much cleaner, more intuitive graphs than
before, provides a form of user interaction, and integrates more easily with Jupyter. The
visualization can still be improved to more closely mimic Atlas than it does currently.

2.3 DEVELOPMENT PROCESS

We are using an Agile design process due to having deliverables approximately every 4 weeks. Our
work will be focused on identifying problems with the current visualization tool and then
completing these tasks within the 4 week sprints. Agile is a good fit for this project and time frame.

2.4 DESIGN PLAN

One of our primary classes is CHPG.io, which is responsible for the input and output of graphs.
This class essentially sends or receives graph information to/from an HTML with formatting for the
nodes/edges of a graph.

Another integral class to our software is CHPG.GraphView, which is responsible for graph
visualization. This class generates the properties of the graph based on the chosen format so that it
can be visualized. CHPG.GraphView is where the vast majority of our alterations have occurred.
There are several helper classes that we have not altered, given to us by the client.

FIGURE 1

SDMAY19-54 7

3. Statement of Work

3.1 PREVIOUS WORK AND LITERATURE

The most relevant project that we are aware of is Atlas Smart View. Atlas Smart View is an eclipse
plug-in which displays a control-flow graph which represents the control-flow of code being
executed. Our project is meant to be a replication of Atlas Smart View. The reason this project is
useful, is because Atlas Smart View is proprietary, meaning we don’t have access to the source code
without a license. We want to create an open-source version of this project, so that it can be used
and built upon by researchers and educators (and whoever else wishes to use it!)

Beyond the open-source advantage of our project, we also will have a portability advantage, since
our graph visualization will work for any code, so long as the exported graph format remains the
same.

3.2 TECHNOLOGY CONSIDERATIONS

The current iteration of our project puts us slightly behind the curve of Atlas Smart View. There are
a few bugs that we must fix in-order to put our project on the same technical level, and even then,
we may have an efficiency and/or memory disadvantage, but that is unknown.

One of the key technological tools that we are utilizing is CytoscapeJS, a javascript library for graph
visualization. Some of the strengths of this tool is the ease of implementing graph visualization by
providing visualizations for nodes and edges, as well as graph-population algorithms. The weakness
of this technology is the slight loss in free customization of the graph visualization. We are limited
by what CytoscapeJS has to offer, but fortunately what it does offer is roughly exactly what we need.
Other graph visualization tools that we have researched yield similar strengths and weaknesses,
and CytoscapeJS seemed to be the best option.

Another technological consideration we are currently looking into is how we import/export graphs.
Our current implementation will likely struggle with massive graphs (thousands of nodes), as it will
be both time and memory inefficient in how the graphs are saved and sent. We would require a
complete overhaul of how we import/export graphs by switching to a JSON format through a
library Jaxon for better efficiency. The strength of this planned change is scalability and memory
efficiency, where the weakness is simply the time that will need to be invested in performing this
redesign of graph importing/exporting.

SDMAY19-54 8

3.3 TASK DECOMPOSITION

Our tasks include a list of features to implement and bugs to fix.

1. Fix visualization issues
a. Styling

i. Make graph nodes should resize properly
ii. Make graph nodes change shape for various different node types

b. Layout:
i. Make the layout of nodes mimic Atlas’s layout

ii. Make the edge style and location mimic Atlas’s edge styling
2. Add Interactivity

a. Add ability to reposition nodes in the graph
b. Add a context menu with ability to:

i. Change color of nodes
ii. Hide nodes

3. Fix integration with Jupyter
a. Ensure functionality is the same on all browsers and operating systems
b. Ensure Jupyter integration lends itself to interactivity

3.4 POSSIBLE RISKS AND RISK MANAGEMENT

Knowledge of the graphing tools is the only major risk associated with our project. To overcome
this risk, we will use an Agile development process to provide incremental improvements and keep
communication channels with our client and advisors open.

We will attempt to avoid risk altogether by making sure all members have a good understanding of
how each part of the software works. Delegating tasks to members with a strong understanding of
the area they are developing will allow us to avoid risk.

3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA

The following is an overview of our milestones with evaluation criteria provided for each milestone.

Milestone Evaluation Criteria

Allow CHPG to run independent from Jupyter
for testing purposes

CHPG can successfully create identical visuals
with and without Jupyter Notebook

Fix visualization errors provided by client Client approval of CHPG visuals created from
XINU Code

Add visualization interactive features similar to
Atlas’s

Client approval of CHPG visualization features

SDMAY19-54 9

Table 1

3.6 PROJECT TRACKING PROCEDURES

We will track our progress using a Trello board for tasks, status reports, and weekly group
meetings. We have started with a list of bugs and features and will track our progress by moving
each item to the appropriate list as we work on them. Then, we will record progress through status
reports, and discuss our progress and future changes at weekly group meetings. Furthermore we
will schedule meetings with our client when possible to discuss further improvements to our
application.

3.7 EXPECTED RESULTS AND VALIDATION

We expect to eliminate all major bugs from the current iteration of our project, as well as add
features beyond that of Atlas Smart View. Testing will be conducted by running the graph
visualization tool on multiple graph based datasets. The visuals created by the CHPG visualization
tool will then be compared to visuals created by Atlas for verification. The operating system Xinu
will be used as our test subject. We will compare Atlas’s visualization and our visualization for each
graph that can be created from Xinu.

4. Project Timeline, Estimated Resources, and Challenges

4.1 PROJECT TIMELINE

Figure 2

This timeline allows for extra time for high effort tasks, while overlapping them with low effort
tasks to mitigate discouragement while working on a difficult task. Tasks that overlap also come
from different areas in the codebase, in order to prevent developers from stepping on each others’
toes and reducing merge conflicts. Two weeks are left at the end of the semester to allow for the
project to be wrapped up, and allow for proper documentation and assessment of our work.

In the later stages of the project we allow for one of the most difficult tasks to be completed in a
large development window. The other task with a maximum difficult rating is scheduled to be

SDMAY19-54 10

worked on earlier in the year so we won’t have to overlap these two tasks. This will allow us to
spread out work throughout these two semesters.

4.2 FEASIBILITY ASSESSMENT

This project should be easily manageable within the timeframe given the scope of the project, and
the scope will expand to fill our timeframe. Our biggest foreseen challenge with this project is the
possibility that the visualization library we are using will not be suitable for our needs and we will
have to find and learn to use another library. However, thus far CytoscapeJS seems to be working
well and should give us the functionality we need to accomplish our goals.

4.3 PERSONNEL EFFORT REQUIREMENTS

Task effort estimations are based on a scale from 1 to 5, with 1 being simple and 5 being complex.

Task Description Effort Estimation

Make graph nodes should
resize properly

Graph nodes should resize
based on text and text should
not extend out of the node’s
boundaries

1

Make graph nodes change
shape for various different
node types

Graph nodes should change
shape for various types of
nodes (such as conditionals in
control flow graphs)

2

Make the layout of nodes
mimic Atlas’s layout

The layout of graphs should
closely mimic the layout of
graphs created in Atlas

4

Make the edge style and
location mimic Atlas’s edge
styling

The edge styles of graphs
should mimic the edge style of
graphs created in Atlas

4

Implement graph navigation
present in Atlas

The graph should allow for the
same navigation features
present in Atlas graphs

5

Implement graph analysis
tools present in Atlas

The graph should allow for the
same graph analysis features
present in Atlas graphs

5

SDMAY19-54 11

Ensure functionality is the
same on all browsers and
operating systems

The graph visualization
should function properly on
all browsers and operating
systems

3

Ensure schema allows
serialization of Atlas graphs

The database schema should
allow for the serialization of
graphs created by Atlas

3

Ensure schema allows for
creation of graphs via API

The database schema should
allow for the serialization of
graphs created via an API

4

Table 2

4.4 OTHER RESOURCE REQUIREMENTS

No material requirements necessary aside from our personal computers.

4.5 FINANCIAL REQUIREMENTS

No financial resources required.

5. Testing and Implementation

5.1 INTERFACE SPECIFICATIONS

The main interface of our system is the CHPG graph file schema. This schema stores a graph with
nodes, edges, and parent relationships. The chpg.io module must be able to convert Atlas graphs to
this schema and then serialize those graphs to a file. The chpg.visualization module must be able to
read in this files and create a visualization from them.

5.2 HARDWARE AND SOFTWARE

We used the software:

● Eclipse IDE
● Ensoft’s Atlas Shell
● Jupyter Notebook
● IJava Jupyter Kernel
● CytoscapeJS Library

SDMAY19-54 12

We implemented our solution using these programming languages:

● Java
● JavaScript

5.3 FUNCTIONAL TESTING

We conducted high-level, manual testing to ensure our applications function properly. This testing
consisted of:

● Ensuring that CHPG visualization mirror Atlas’s visualization to a degree that is
satisfactory to our client

● Ensuring that our project works across the following systems:
○ Operating Systems

■ Windows 10
■ Mac OS
■ Linux

○ Browsers
■ Chrome
■ Firefox
■ Safari

5.4 NON-FUNCTIONAL TESTING

We used manual verification to ensure that our application performs visualization, analysis, and
serialization quickly.

5.5 RESULTS

Our advisors have deemed the project to fit the needs of the client. We verified that the project
works across common operating systems and browsers.

6. Closing Material

6.1 CONCLUSION

Ultimately, we have refined the graph visualization tool given to us. We have refined the
visualization itself, ensuring that text fits within nodes, added containers to the graphs, as well as
altering the shapes of the nodes to fit the type of the node. We fixed integration problems with
Jupyter, ensuring that the user can import the graph and view it without any errors or extra steps.
Finally, we added customization options which allow the user to manipulate the graph to fit their
needs.

6.2 REFERENCES

This is not applicable.

SDMAY19-54 13

7. Operation Manual

INSTALLATION

Eclipse

Install the latest version of the Eclipse IDE on your computer. Go to https://www.eclipse.org/ide/
for more information.

Atlas

Install Ensoft’s Atlas plugin in your Eclipse IDE. Go to http://www.ensoftcorp.com/atlas/ for more
information.

Jupyter Notebook

Install Jupyter Notebook on your system. Go to https://jupyter.org/ for more information.

IJava Kernel

Install the IJava kernel for Jupyter Notebook. This allows Jupyter to run Java code. Go to
https://github.com/SpencerPark/IJava to download the kernel and find install instructions.

Clone the CHPG Repository

Use Git to clone the CHPG repository at https://github.com/kcsl/chpg to your system.

SDMAY19-54 14

https://www.eclipse.org/ide/
http://www.ensoftcorp.com/atlas/
https://jupyter.org/
https://github.com/SpencerPark/IJava
https://github.com/kcsl/chpg

SETUP

Eclipse and CHPG

1. Open a new Eclipse workspace
2. Go to File->Import->General->Existing Projects into Workspace
3. Click the browse button next to “Select root directory” and navigate to the root directory of

the CHPG repository
4. Select the following projects:

a. jupyter
b. chpg.visualizations
c. chpg.tests
d. chpg.io
e. chpg.graph
f. chpg.atlas
g. chpg.algorithms

5. Click “Finish”
6. Again, go to File->Import->General->Existing Projects into Workspace
7. This time click the “Select archive file” option, click browse, and navigate to the root of the

CHPG repository
8. Select “protobuf-eclipse.zip”
9. Click Finish

CONFIGURING THE ATLAS SHELL TO USE CHPG

1. From the Eclipse Package Explorer menu, right-click chpg.atlas and select Run As->Eclipse
Application

2. A new Eclipse window will appear
3. Within this window go to Atlas->Open Atlas Shell
4. From the Atlas Shell, click the cog wheel to get to the “Atlas Shell Settings” menu
5. Under “Shell Dependencies” find “chpg.atlas” and add it to the “Selected” dependencies
6. Click “OK”

SDMAY19-54 15

EXPORTING GRAPHS FROM ATLAS

1. Import a project into the Eclipse instance running the chpg.atlas plugin.
2. Add the project to the Atlas code map.
3. Find a function you would like to create a graph from and get the functions name
4. In the Atlas Shell, run the following commands:

import chpg.atlas.support.GraphConversion.convert

import chpg.io.GraphIO.exportGraph

import java.io.File

The above code imports the required code for exporting graphs.

5. Then run the following commands (replace “functionName” with the name of the function you selected
and "/path/to/your/graph.chpg" to the path where you want to export the graph:

var myCfg = cfg(functions("functionName")).eval

var myGraph = convert(myCfg)

exportGraph(myGraph, new File("/path/to/your/graph.chpg"))

The above code creates a Control Flow Graph of the function with name “functionName”, converts it to
a CHPG graph, and then exports it to a file.

VISUALIZING GRAPHS

1. Start up the Jupyter Notebook and navigate to the CHPG repository within the Jupyter file
tree

2. Browse to the jupyter folder at the root of the repository
3. Open the file “LoadGraph.ipynb “
4. Change the file path on the first line of the second code box to point to the graph file you

just exported
5. Click the “Run” button

Interacting with Visualization

1. Select a node by left-clicking on it
2. Open the context menu for a node by right-clicking it

a. Hide a node via the context menu
b. Change the color of a node via the context menu

3. Move a node by clicking the node, holding the clicker down, and moving the mouse
4. Navigate around the graph using the navigation tools at the left of the visualization

window

SDMAY19-54 16

SDMAY19-54 17

